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NATICRAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE NO. 1871

A MATHEMATICAL THEORY OF PLASTICITY BASED
ON THE CONCEPT OF SLIP

By S. B. Batdorf and Bernard Budiansky
SUMMARY

A theory of plasticity based on the concept of slip is proposed
for the relationship between stress and strain for initially isotropic
materials in the strain-hardening range. As treated in the present
paper, the theory is an extension to polyaxial stress conditions of
the conventional uniaxial stress—strain relation, and time—dependent
effects, such as creep and stress relaxation, are not considered.

Previously existing theories can in general be classified into
two groups, often called. theories of plastic deformation and theories
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of piasvic fiow. Deformation thsoriss are bassd on the assumption

that for continual loading the state of strain is uniquely determined
by the state of stress. Flow theorlies are based on the assumption
that the increment of strain is uniquely determined by the existing
stress and the increment of stress. Theories of both types make
additional assumptions concerning the orientation of the principal

axes of plastic strain or of Increment of plastic strain and concerning
the nature of loading and unloading.

The theory proposed 1s of neither the flow nor the deformation
type. Its formulation was guided mainly by physical considerations.
with respect to the assumed mechanism of plastic deformation, namely
slip. The new theory mekes no use of the assumptions Just mentioned
in connection with flow and deformation theories; in fact, according
to this theory, all these assumptions are wrong.

The new theory is based on the assumption that slip in any direc—
tion along parallel plenes of any particular orientation in the material
gives rise to a plastic shear strain which depends only on the history
of the corresponding component of shear stress. The relation between
this plastic shear strain and the corresponding stress can be determined
from the tenslle stress—strain curve. The plastic strain due to any
system of applied stresses is then found by considering the history of
the component In each direction of the shear stress on each plane of
the material, finding the corresponding plastic shear strain, trans—
forming this plastic shear strain into plastic strains in some fixed
system of coordinates, and summing over all slip directions and slip
plane orientations. A semigraphical method is given for computing in
thls manner the strains associated with a given stress state.
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The theory is shown to give results in better agreement than
previously existing theories with data obtained in an experiment in
which a cylinder was compressed into the plastic range and then twisted
at constant compressive strain., The theory therefore appears promising,
but more theoretical and experimental investigations of the character—
istic differences between the new theory and previously exlsting
theories are required before the evidence for or ageinst the new theory
can be considered conclusive.

INTRODUCTION

A new theory is proposed for the relationship between stress and
strain for initially isotropic metals in the strain-hardening rangse.
The theory seeks to predict the plastic strain that would result from
the application in any sequence of arbitrary combinations of stress
and requires for this purpose only & knowledge of the uniaxial stress—
strain relation for the material.

This theory is essentially quite different from the many theories
of plasticity that have previously been proposed. It has been recognized
(reference 1) that existing theories of plasticity may in general be
classified into two types: deformation theories and flow theories.
Both types of theory assume that the relation between stress and strailn
is governed by one law during loading and by another law (the elastic
law in incremental form) during unloading. Ioading and unloading are
defined in terms of the increase or decrease of some rotationally
invariant function of the stresses, those most frequently used being
the maximim and the octahedral shear stresses. The two types of theory
differ chlefly in that deformation theories propose laws glving plastic
strain in terms of applied stress; whereas flow theorles propose laws
glving increments of plastic strain in terms of applied stress and
increments of applied stress. Thus, the previous loading history is
assumed to have no effect on straln in deformation theories or on
increment of strain in flow theories. These basic assumptions appear
to be In the nature of plausible postulates made to facilitate the
mathematical formulation and subsequent analysis of the various
theories rather than physically evident or experimentally verified
facts. Moreover, 1t is characteristic of both flow and deformation
theories that the laws are proposed by means of equations having forms
that are more or less arbitrary, which therefore introduce additional
agsumptions of uncertain validity. For example, in theories of plastic
flow, the equations proposed are such that the principal axes of stress
and of increment of plastic strain are assumed to coinclde. On the

. other hand, deformation theories assume coincidence of the principal

axes of stress®and plastic strain. Consequently, although cansiderable

" difference of opinion exists concerning the relative merits of flow and

deformation theories, it 1is entirely possible that neither type of
theory 1s correct.
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The present theory is of neither the flow nor the deformation type.
Unlike most theories proposed to date, its formulation was guided mainly
by physical considerations with respect to the mechanism of plastic
deformation. The present theory involves none of the assumptions Just
discussed iIn connection with flow and deformation theories; indeed,
according to this theory, all these assumptions are wrong.

This paper presents the essential features of the new theory and
seeks to establish its claim to serious consideration by showing its
marked superiority to previously existing theories in accounting for
the data obtalned in one of the more crucial types of plasticity
experiment.

SYMBOLS
Q ' solid angle, used to describe oriemtation of slip
planes, steradians
B angular coordinate giving direction of slip, radians
o direct stress
oy, direct stress at which plastic deformation begins
T shear stréss
Ty shea;x' stress at which plastic deformation begins
€ total direct strain
e” plastic strain ) -
4 total shear strain
r" plastic shear strain
X, ¥, 2 rectangular coordinates; used also as subscripts in

connection with stress and strain to denote
particular components of these quantities

1, 2 direction of normal to slip plane and direction of -
s8lip, respectively

'F, F(ryo) characteristic shear function for material, giving

plastic shear strain per steradian of slip—plane
orientation per radian of slip direction as a
function of shear stress

ly1s 'l.yl,...lze coslnes of angles between x and 1, y and 1, ...
Zz and 2 directions
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an coefficient of nth term in series expansion for F
»
&> gn<§-> function glving variation of plastic strain with
L applied stress in uniaxial compression or tensliaon,

corresponding to nth term of series expansion for F

1 '1'1'2 unit véctors In 1 and 2 directlions, respectively

1, 3,k unit vectors in the x, y, and 2z directioms, .
respectively

m, P, q unit vectors having directions indicated in figure 8 .

«, ¢ polar coordinates used to specify orilentation of slip

plane (see fig. 8)
ASSUMPTTORS AND LIMITATIONS

The uniaxial stress—stralin behavior assumed in the present analysis
is the slightly ideallzed one usually adopted for engineering purposes.
The stress—strain curve for first loading is represented by OABC 1in ¢
figure 1. The straight part of this curve O0A 1s called the elastic
rangs, and the point A 1s called the elastic limit. If the load is
removed before the stress exceeds the elastic 1limit, the material returns
to its original state at O, and there is no permanent deformation. If,
on the other hand, the stress is increased to the value at point B and
then 1s removed, the stress—strain relationship during the unloading
process is that given by the dashed line BO*. The line BO®* has the
same slope as the line OA  so that during the unloading the material
behaves elastically except that it has undergone permenent plastic strain
given by 00!'. Upon subsequent loading, the point representing the
state of the material stays on the dashed line until it reaches B and
then, as the load further increases, continues along the original path .
toward C. Additional unloadings and loadings follow the same pattern
of unloading along a line parallel to OA and loading along the same
line until the stress—strain curve of the original material is reached.
At any stage of the loading history Just described, the strain may be
considered to be the sum of an elastic part related to the stress by
Hooke'!s law and a plastic part determined by the highest value of the
stress occurring up to the time under consideration.

The law of plastic deformation to be postulated 1s in accordance “
with the uniaxial behavior jJust described. In its original unstressed
state the material 1s assumed to have identical stress-strain curves in
tension and compression. The effect of reversal of loading upon the ® .
plastic behavior is not treated in this paper other than to state in
passing that the theory is flexible enough to be adapted to materials
with a Bauschinger effect. As in the uniaxlal case, time—dependent
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effects, such as creep, elastic recovery, and the effect on the stress—
strain curve of rate of loading, are neglected.

THEORY

Physical considerations.— Slip lines are cammonly observed in metals
undergoing plastic deformation. On the assumption that, at least for
some metals, slip is the principal mechanism of plastic deformation, the
present theory was formulated in such a manner as to incorporate the
main features of this phencmenon. These features are now reviewed.

When a metal crystal 1s subjected to & small shear stress, it under—
goes elastic shear deformation. (See fig. 2.) As the stress increases
beyond a certain limiting value, small blocks of the crystal commence to
slide with respect to each other along crystallographic planes called
s8lip planes. As the displacements increase, the shear stress required
to produce further deformation also increases. The total shear displace—
ment at any time is the sum of the elastic shear in the crystal blocks
and the shear displacement due to slip between neighboring blocks.

When the stress 1s removed, the elastic component vanishes, but the
displacements due to slip remain as a plastic strain. The relationship
between applied shear stress and total shear strain for repeated loading
and unloading is similar to that described for uniaxial tension and
1l1lustrated in figure 1. The shear stress required to produce slip is
found to be substantially Independent of the normal stress and slip
occurs only along certain preferred directions in the slip plane. (See
reference 2.)

Accordingly, in the theory, the following assumptions are made: Any
strain 1s the sum of an elastic strain and a plastic strain; plastic
strain 1s composed solely of shear deformations due to slip; these shear
deformations are uninfluenced by normal pressures; the plastic shear
deformation resulting from slip in any direction in a plane of any
glven orientation depends only upon the history of the component in the
direction of slip of the shear stress on this plane; and the total
plastic strain is simply the sum of all the slip deformations that have
occurred. If the stress history is such that reverse slip does not
occur, the dependence on the aforementioned previocus history becomes
simply a dependence on the highest prevlious value of the shear—stress
camponent in question.

Mathematical formulation of the theory.— Although a macroscopically

isotropic metal is actuslly an aggregate of tiny crystals, 1t is
customary and convenient to formulate 1ts -stress—strain relations as
though it were a continuum. Accordingly, instead of considering a small
slip along each of a large number of discrete planes, the theory
contemplates an infintitesimal plastic shear strain associated with

each Infinitesimal fraction of the continuum comprising all possible

planes. -
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It is convenlent to represent the orientation of a particular plane
by the coordinates of the point at which 1t would be tangent to a hemi-
sphere. The radius to the point of tangency is the normal to the plane.
The axis 1 shown 1n figure 3 is taken in the direction of the normal to
the plane, and the axis 2 denotes a particular direction of slip in the
plane. An infinitesimal band of planes may be represented by the normals
included in the solid angle 4, and an infinitesimal band of slip
directions may be represented by dB. The theory postulates that the
slip along the planes dQ, in the increment dp of slip directioms,
produces an infinitesimal plastic shear strain d71o" associated with
the 1,2 axes that is given by

arp," = Frp)aa ap (1)

where F 1is a function depending only on the history of T s the
shear stress in the 2 dlrection on the plane perp‘end.icu.'l.a'::}t to the
l-axis.

The contribution of this infinitesimal shear strain to the strains
in the standard x-, y—, and z-axes is readlily written in terms of the
direction cosines of the l-axis and 2-exis. Thus,

de;" = Iy lpo 475"

a
3
I

-9 "

" _ "

s (2)
arg," = (zﬁzye + 1y12x2)<h'12"
47g," = (’xllzz + 7'217'12> dryo"
d7g," = (zylzze + 1,91 y2>d712" J )

In order to find the total plastic strains in the standard axes, the
effects of the plastic shear—strain increments must be integrated over all -
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directions and all planes. Thus,

2 ]
" = j}; f—:/z F(110)1y11,0 40 4B
r : (3)
t x/2 '
| 7oy = /]; f-—n/e F(r10) (aatye + zyllxe)dn ap

where H denotes the entire hemisphere. {The slip—direction increment
is integrated through 180° to include all possible directions only once. )

If the applied stresses are given in the standard coordinate system
88 Oxy; Oys « o + Tyys the shear stress T, 18 glven by

1'12 = 1x]1lyp0y + lylzye"y + 1,71,00, + (lxlly’a + zylzx'2)"n

+ (alyp + 121112)&‘ + (Zy11z2 + 11 yg)fyz - ()

In order to evaluate the total plastic stralns as given by
equations (3), analytical expressions for the direction cosines must
be used. Appendix A contains such expressions in a system of spherical

- coordinates. '

Characteristic shear function.— It follows from the previous
discussion concerning slip that, if T1» 1s gradually increased, the

. function F mst remain zero until a limiting value T, 1s reached.
This 1imiting value is evidently equal to one-half the elastic limit o,
in pure tension (or compression) since in a tension test the maximum :
shear stress is one—half the applied uniaxial stress. Beyond this
value, F varies with 7,, 1n a manner characteristic of the material
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, and is referred to hereinafter as the "characteriétic shear function”
and the corresponding curve, as the "characteristic shear curve." *
(See fig. k4.)

The characteristic shear curve can be determined from the stress—
' strain curve for the material in the followling manner. The characteristic
shear function F 1s expanded into the series A

.|
P(rag) - 3 o{r2-1) e

.which is then substituted into equation (3). The resulting plastic
tensile strain can be shown to be given by

Chel) @ -

where the functions g, do not depend on the material under considera—
tion. A set of these functions for the case N = 5 has been evaluated
by the method described in appendix B over a range of stress extending
up to 1.8 times the elastic limit stress. The results are tabulated in
table 1 and are shown graphically in figure 5.

The determination of the characteristic shear function corresponding
to a particular stress—strain curve by means of the g—functions 1is
quite simple. Equation (6) is written for /oy equal to 1.1, 1.25,
1.4, 1.6, and 1.8; table 1 is used to obtain the numerical values of
the g-functions at the corresponding strain in each case. Thils procedure
gives five linear algebralc equations for determining the five unknown
coefficients aj;, a5, . « . a5. These values of the coefficients are
then substituted into equation (5). If the stress—strain curve 1s not
known to a streas as high as 1.8 times the elastic limit stress, either
fewer equations and fewer g-functions or interpolated values of the
g-functions must be used.

Application of theory.— Once the characteristic shear curve has
been obtained, 1t is only necessary to apply equations (3) and (4) to
obtailn the plastic stralns resulting from a given sequence of stresses.
The 775 used to eveluate F 1s, as indicated previously, the largest
value of this stress which has occurred for each particular choice of
directions 1 and 2 durlng the history of the loading. Because serious

gt difficulty is involved in evaluating the integrals analytically, the
. use of approximate msthods 1s advisable., Appendix C descrlbes a semi—
graphical method of evaluating the required integrals for any plane—
stress condition. The method provides a stralghtforward procedure for {
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the calculation of strains with accuracy sufficient for enginsering
purposes.

COMPARTSON WI'H EXPERIMENTAL DATA AND DISCUSSION

In most of the experiments that have been performed to test theories
of plasticity, the ratios and directions of the principal stresses have
been constant throughout the loading. In general, such experiments fail
to distinguish sharply between the various theories, and in particular do
not provide any basis for choosing between flow and d.eformation theories
(references 3 and h)

A more crucial type of experiment was performed by Roger W. Peters
and Norris F. Dow at the Langley Laboratory of the NACA. In this experi-—
ment, a thin aluminum-elloy cylinder was compressed into the plastic
range and, with the compressive strain held constant, was then twisted.
During the twisting process, the compressive stress decreased. After a
shear stress of nearly 12 ksi had been applied, the shear stress and
then the compressive stress were removed.

In order to facilitate comparison between the experimental data

- and the predictions of various plasticity theories, the experimental
stresses were adopted as the prescribed conditions and the corresponding
strains were computed. The stress combinations applied during twisting
and the resulting plastic compressive strain are shown as solid curves
in figure 6. It is evident from the figure that plastic action continued
throughout the twisting process. This behavior is contrary to what
would be expected on the basis of conventional theories. Consider, for
example, the dashed curve representing constant octahedral shear stress
in figure 6. The region below this curve corresponds to octahedral shear
stresses lower than that at the beginning of twisting, and the region
above the curve corresponds to higher values of the octahedral shear
stress. Comparison of the stress-history curve and the curve of constant
octahedral shear stress showe that the octahedral shear stress was
decreasing during the early stages of twisting and did not increase

above the highest previous value until the applied shear stress exceeded
8.6 ksi. On the assumption that after unloading, plastic action is not
resumed until the highest previous value of the loading function 1is
exceeded, octahedral—shear theorles would give zero plastic strain up

to a shear stress in excess of 8.6 ksi, and similarly maximumshear—
stress theorles would predict zero plastic strain up to a shear stress

of about 5 ksi. The present theory, on the other hand, predicts plastic
action throughout the twlsting process, because even when the maximm
.8hear was decreasing in magnitude, 1its orientation was being changed and
new and unhardened planes were being subJected to high shear stresses.

Figuré T shows that the present theory i1s not only qualitatively
but also quantitatively in rather satisfactory agreement with the test
data, in any event in much better agreement than conventional theories.
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The total plastic compressive strains, computed by the present theory

at shear stresses of 6.3 ksl and 11.8 ksi, were below the measured

values by 6 percent and 9 percent, respectively. As the figure indicates,
the present theory predicts an almost constant total compressive strain -
in agreement with experiment. The octahedral—shear theories would
predict the elastic relation up to an applied shear stress of 8.6 ksi

and the maximim—shear theories, to an applied shear stress of about 5 ksi.
The predictions of these theories at higher applied shear stresses have
not been plotted because there appears to be no general agreement as to
the proper way to apply them in the case of second loading.

The possibility exists, of course, that new flow or deformation
theories might be devised using a new stress invariant that would increase
continually during the loading sequence accompanying twisting in the
experiment Just described, and i1t might at first be suspected that the
theory of the present paper is perhaps a flow or deformation theory
employing such a loading criterion. The fact that this is not the case
can be seen by considering an experiment in which a state of pure tension
in the plastic range is maintained approximately constant in magnitude
vhile being rotated in direction. (See reference 4.) According to both
flow and deformation theories, 1f the magnitude of the pure tension
decreases slightly during rotation, no plastic deformation can occur.
According to the present theory, however, new and unhardened planes
acquire large. shear stresses during the rotation, and plastic deformation
occurs. Moreover, by definition (reference 5) , deformation and flow
theories predict the increments of the strains for continual loading on
the basis of only the corresponding increments of stress and the state
of stress immediately prior to application of the stress increments;
vhereas the present theory requires for such a computation a knowledge of
the entire previous stress history so that the extent and nature of the
hardening of each plane can be determined.

CONCLUDING REMARKS

Previously existing mathematical theories of plasticity can generally
be classified into two types, often called flow and deformation theories.
Both types of theory are constructed largely on the basis of mathematical
considerations and involve a number of arbitrary assumptions of uncertain
validity. The theory proposed herein is of neither the flow nor the
deformation type but constitutes an entirely different approach to the
problem of plastic behavior, its formulation being guided mainly by
physical considerations with respect to the assumed mechanism of
rlastic deformation, namely slip.

Test data obtained in one of the more crucial types of plasticity
experiment are found to be in decidedly better agreement with the present
theory than with previously existing theories. The experimental data
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however are not very extensive. Before the new theory can be regarded
as established, additional experimental data of the same general type
mist be obtained, the other characteristic differences betwecn the new
theory and other theories of plasticity must be explored both theoreti--
cally and experimentally, and the range of stresses and strains within
which the theory is reasonably accurate must be determined.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics _
Langley Air Force Base, Va., February 1k, 1949
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APPENDIX A
DERIVATION OF TRANSFORMATION EQUATIONS IN SPHERICAL COORDINATES

In order to find the shear stress in a given slip plane due to a
set of applied stresses as well as to perform the integrations required
to determine the corresponding plastic strain, analytical expressions
for certain direction cosines used in the analysis should be obtained.
Such expressions are now obtalned for a polar-coordinate system in
which the z—axis 1s chosen as the polar axis. Because the plasticlty
theory under consideration makes use of only two directlons — namely,
the direction of slip within the slip plane and the normal to the
plane — only the cosines of these directions are derived. The corre—
sponding unit vectors 1n; and n,, as well as the unit vectors 1,

J, Xk, m, p, and q are identified in figure 8.

The direction cosines le, zyl-' . o e 1,0 are sinrply the components

of the unit vectors n; amnd np in the x, y, and z directions.
Thus, .

h ’

nl = ile + lel + klzl

and (A1)

ﬁe = Ilﬁ + jlye +E-122 .

P

This resolution of the vectors may be brought ebout in a succession of
easy stages as follows:

From figure 8
Ty =k sin @ + D cos ¢ (a2)

p=1sina+ Jcosa (A3)

From equations (A2) and (A3)
31=Tsmcccos¢+Tcosacos¢+ism¢ (ak)
Simiia.rly, from figure 8

Tp=Tcos p~q sin B | (a5)
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L.

=k cos § —D ein ¢ (a6)

sl

d=-1cosa+ jsina (a7)
From oquaticns (A3), (AS), (A6), and (AT) | |
| T, = 1(cos @ sin B — sin a cos B sin @)
+ J(-sin o 8in B — cos a cos B sin @)
+ k cos B cos @ ' (A8)

From equations (A1), (A4), and (A8) the expressions for the direction
cosines are identified as follows:

11 = sin a cos ¢

ly1 = cos a cos ¢ (a9)
- ' ’ lzl = 8in ¢ ’
LY N

1gp = cos a 8in B — sin a cos B sin @
'l.ye=—einasinﬂ—cosa.cosﬁsin¢? (A10)

1,0 = cos B cos ¢

-

Substitution of the values for 1, 159, + &+ ¢ 1,, fram equations (A9)

and (A10) in equations (4) and (2) of the text leads, after scme manipula—
tion, to the following results: The component in the direction np of
the shear stress in the plane normal to El due to the application of

stresses oy, Ops « o o Tyz is given by

T1p = % oy (sin 2a sin B cos ¢ - sin®a cos f sin 28)

+ % Uy(—ein 2a sin B cos P — cos®a cos P sin 2¢)

o+ % o,(sin 2¢ cos B)

+ Ty cos 2a sin B cos § —12- sin 2o cos B sin 2¢)

+ 1,y(cos a 8in B sin ¢ + sin « cos B cos 2f)

+ 'ryz(—sin a sin B sin @ + cos a cos B cos 2¢) (A11)
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The incremsents of strain resulting from the increments of shear deformation

in the slip plane d7;o" are given by .
de " = % d712"(sin 2a ein B cos P — sina cos B sin 2¢)
d.ey" = % d77,"(~e1in 20 sin B cos @ - cosa cos B sin 2@)
de " = % d775"(sin 2@ cos B)

(a12) y

d7xy" = dylzf'(cos 2qa sin B cos @ —% sin 2a cos B sin 2@ r

i d7,," = 4775"(cos @ sin B sin § + ein a cos B cos 2¢)

d"yz" = d712"(—e}n a s8in B sin @ + cos a cos B cos 2¢) ) -
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APPENDIX B
DETERMINATION OF CHARACTERISTIC SHEAR FUNCTION

The characteristic shear function for a material may be conveniently
determined from the uniaxial stress—strain curve for the material. If
the z-axis is the axis along which stress is applied (see fig. 8),
equations (3), (A9), and (Al0) combine to give for the corresponding
plastic strain

2 2
€, = j;x/ ag fn/ ap F(‘rle)-%'- cos B sin 2¢(2x cos @) (B1)

-n[2

This integration is performed over the hemisphere in front of the x,y plane
and, since axial symmetry exists, dQ 1s takemn equal to 2r cos § df.

The characteristic shear function F 1is expanded into the series
N T n
12
) = 3 w22 -) (s2)
n=1 L

for Tio 2 Te For Tio < T the characteristic shear function 1is zero.

Consequently, when the value of F from equation (B2) is substituted
into equation (B1) the integration should be carried out only over the
regions where T, > Tys OT

o, sin 2¢ cos B > o ' (83)
because for uniaxial tension

T2

= 3 o, sin 2§ cos B (B4)
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From the use of equations (B2) to (B4), equation (Bl) becomes

n;“; .‘B‘ N ‘
ez=%f f~ > a.n(ssintcosB—l)nsintcos%cosﬂdﬂdt
J%¥ B |n=1 :

(B6)
where
t =2
Oz
B = -2
%
T = sin? 1
and

- cog™l L1
B = cos s sin ©

The integration with respect to B 1in equation (B6) can be carried out -
analytically and leads to the following result:

N ,
€, = LZI a & (s) (B7)
where
:t—ein‘le-)
gn(s) = an_l(%) ap(s,t)at (88)
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and -

ql-_-cosg-sin tg—‘s sin t(B + sin B cos'ﬁ)—sinﬁé]

I'\f
i\
o)

cos £ sin t DS—' 628102t sin ‘é(cosgﬁ + 2)

—seint('5+sin§cos§)+sin'§]

q3-0032 sint[s sin t(B + sin B cos B)(%B sint+-3->
- 82810t sin Bl2 + coaZp) — % sin '5] ? (B9)

q, = cos g sin t[seainzt sin B(2 + cosZp) % 8281int + 2>

-8 sin t(B + sin B cos 'B)(% 8%ain?t + 2) + %— sin 'ﬁ]

15 = cos % sin t[s ‘si.n t(B + 8in ¥ cos 'B)Gé stgintt

+ }1&2 82g1n2t + g)— 8281nt sin ‘5(2 + cosg‘B')(% 82s1nt + l9)

,S& + 8in B(EE s“sin<t + §>J

4

The integrations in equations (B8) have been carried out numerically
for the case N = 5 for values of o0,/0; equal to 1.1, 1.25, 1.k,

1.6, and 1.8. The integrations were performed by finding the area under
fifth—degree curves passing through the first six and last six points
corresponding to 11 values of @ at each stress level, seven decimal ‘

- places being retained during the computations. The results obtained are
glven in table 1 and are shown graphically in figure 5.
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The equation

=1 L

5 ~
Flryp) = S a,,<T—JL?-- 1>n (510)

should give a very close approximation to the characteristic shear
function for the material when the values a;, ap, . . . 85 &are chosen

to satlsfy equation (B7) for the case N = 5 at the five stress levels
for which the numerical integrations were performed. Except for the
errors in the integrations, the characteristic shear function so found
would lead to s stress-strain curve fitting the one from which it was
derived over the entire elastic range and at the five points in the
plastic range already indicated. If desired, of course, less accurate
characteristic shear functions can be found with less computation by
using fewer g—functions and by fitting the stress-strain curve at
fewer points.
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APPENDIX C

A METHOD OF DETERMINING PIASTIC STRAINS ASSOCIATED

i WITH PIANE STRESS

Y TN
" s

As indicated in equations (3) of the text , the theory glves plastic
strains in terms of triple integrations. Because these integrations would
prove quite formidable if treated analytically, consideration has heen

: ‘;, . given to approximate methods. The method now to be described is a gemi—
. graphical one designed to facilitate the computation of plastic strains
EL associated with plane stress.
ny:

The system of plane stress is assumed to act in the x,y plane,
and the hemisphere on which the directions of the slip—plane normals
are measured 1s taken above the x,z plane. This hemisphere is congidered
to be divided by lines of constant « and constant @ 1into elements of
- equal area, the projections of which on the x,y plane are illustrated in
figure 9. The elements of area on the front half of the hemisphere are
denoted by a system of subscripts as indicated in the figure. The msan
' coordinates (am,¢n) of each element of area were calculated and are

listed in table 2.

In order to find the shear stress T, in the plane tangent to the
hemisphere at the point (am,¢n) , equation (All) is written in the form

T .
<?'1'?' = Z(Am s1n B — By, cos B)
L/m L

—&(Am sin B + Cyp cos B)
°L

+ :—IZ<Dm sin B — B, cos ﬁ) (c1)
L
- where
Am = sin 2a; cos ¢n (c2)

Bm = sinaam ain 2¢n (03) }
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Com = cosz'c.'m sin 2¢, (ck) g
Dpm = cos 2apy cos @, (c5) )
Em = ';—' sin 2ap sin 2@, (c6)

The numsrical values of these coefficients are given in table 3.

The contributions of the plastic shear deformation arising from the
slip in planes tangent to the part of the hemisphere in the m,nth element
of area to the plastic strains measured in the system of coordinates

used to specify the applied stresses are given by a similar reformulation
of equations (Al12):

(2ex")m = 3(2722" ) (b 810 B ~ By, cos B) (c7)
(dey")m = - %(d712")m(Am sin B + Cpy cos B) (c8) )
(7" )m = @) @m 510 B =By cos ) (€9) ‘

Equations (CT) to (C9) make use of the assumption, later to be employed
also in applying equation (Cl), that all planes tangent to the part of
the hemisphere in any rectangular element of area may for computational

purposes be regarded as concentrated at the mean coordinates of the {
element.

The values of the shear-stress component T,, at point (m,n) in the

directions B = 0° and B = 90° are computed by using equations (Cl).
These companents are then plotted at right angles from a common origin
and a circle is drawn through the origin and two ends. (See fig. lO(aS.)
The diameter drawn from the origin then represents the magnitude and
direction of the shear stress in the m,nth plane, and the chords drawn

from the origin in othér directions represent the components of shear
stress in those directions.

A circle 1s then drawn about the origin with a radius corresponding
to the elastic-1imit shear stress, as in figure 10(b). According to the
theory, shear deformations are associated with each direction in which
the sliear—stress component exceeds the elastic—limit shear stress, the
amount of shear deformation 1n any direction depending on the amount by
which the corresponding shear—stress component exceeds the elastic—limit
shear stress.

In suming the contributions in the different directions, only
discrete directions separated by 9 , a8 Indlcated by radial lines in
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figure 10(b), are considered. The shear strain in each of these
directions is given by

F[(le m] dq dp

(@722

= 720 ()

and is found by using the shear—stress component in that directlion and
the characteristic shear curve for the material. (See fig. k,) Refer—
ence to equations (C7) to (C9) shows that the products of this strain
with s8in B and with cos B must then be found. The summation over
the various directions of slip (direction 2) may then be carried out;
this procedure corresponds to performing the integration over B in
equations (3).

The operations of finding the plastic shear deformation in each
direction and multiplying the result by sin B8 or by cos B may
convenlently be carried out in a single step by the use of a master
chart of the type shown in figure 1l. Along each radial direction
considered are plotted values of F cos B for the material being used.
This chart 1s simply fitted over figure 10(a), which represents the
stress state, and the values of F cos B are read off directly (see
fig. 12) and added in order*to perform the integration over B. The
value of this sum is then multiplied by the appropriate coefficient,
determined from equation (C7), (C8), or (C9), and table 3. The
values of F sin B may be obtained in the same manner by rotating
the master chart through 90°. A different work sheet is used for
each point (m,n) at which the shear stress on the tangent plane
causes plastic shear deformation. For plane—stress systems symmetry
exligts between the front and rea.r halves of the hemisphere; thus,

”

the total plastic strains ey", ey", and 7,," are found by adding

up the corresponding strains computed on each sheet associated with
the front half of the hemisphere and by multiplying by 2.

At first sight this method of integration appears quite formidable
because the front of the hemisphere 1s divided into 200 elements, which
would appear to require 200 work sheets. In practice, however, it is
found that ordinarily many of the elements (m,n) make no contribution

to the plastic deformation. In addition, the symmetry properties of the

stress state considered are often such tha.t only a quarter or sometimes
only an eighth of the hemisphere needs to be considered.
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TABLE 1

CAICULATED g-VALUES

) Tnle)

8]_ 82 83 8h 35
0.0311486 | 0.0020860 |0,0001560 | 0.0000137 | ~----=---
JA671619 | .0281396 | .0053115 .00107h41 | 0.0002206
.3744986 | .1004147 | .0308275 .0099447 | .0033785
J7211448 | 2948256 | .1354768 +0651T61 | .03366k44
1.1965026 | .6448685 | .3883228 2487629 | .1656213

“!ﬂ:’!’f
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(deg)

= ]

OMO IN INCO -2 \0 DV \0 D
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1223&%%%

TABLE 2

(deg)

5555555_055

EEREEERERR

[see £1g. 9;

MEAN COORDINATES OF ELFMENTS OF AREA

m,n

123&56789m

E 3
8}

of triangular element to pole,

Taken one—third of way from boundary

a
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TABLE 3 |
‘ |
TRANSFORMATION COEFFICIENTS
[A"m:n = “Am; Bon = Bmi Can = Coms D11m,n * D5 Domyn = Dimi Empn = ’%]

Amm
n ™10 | 2,9 | 3,8 | 4,7 | 5,6
1 0.156 | 0.453 | 0.706 {0.890 |0.986
2 JA55 | Mo | 699 | .880 | .976
3 JA51 ] Mo . 863 | .956
4 AT k25 | 662 F B3| .925
5 JAko| ko5 | 63| .795 | .88
g 6 W31 f .379 | 590 | (M | 824
T 19 W3k ) 537 676 | .Th9
8 103 .299 | 466 | .587 | .651
9 L08L1 .236 | .368 | .46k | .514
10 o6 | L2134 | 209 | 264 | .293
b m| o 4 3 2 1
Doy
LY cm
m
a 1 2 3 4 5 6 T 8 9 10 {
h 0.099 0.09k 0.085 | 0,073 | 0.058 0.0k2 0.027 0.015 0.005 | 0.001
2 .295 .281 .253 .216 172 125 .081 043 .016 .002
3 482 458 Lk .352 .280 204 132 .0TL 026 .003
y 653 .621 .560 L7 . 277 179 . .036 .00k
5 .800 .T61 687 .585 1465 .339 «220 .118 »Olily .005
6 91k .869 78 669 .532 .388 .251 135 .050 .006
T .983 .935 Bl .T19 5T2 J7 .270 JAh5 .054 .006
8 .985 .937 848 .21 573 .18 2T 45 054 .006
9 .883 .80 .T59 RTS .51k 375 .243 .130 .0u8 .005
10 .563 .535 483 Q2 .327 .239 .155 .083 031 .003
n a 10 9 8 7 6 5 b 3 2 1
B
) Em
2 \C| 110 [ 2,9 | 3,8 4,756
1 0.008 10.023 | 0.035 | 0.045 | 0.049
- 2 0231 L067T| .105] .132| .1u7
3 .038| 10} 11| .216 239
k 051 | 149 | .232| .292 34
5 063 | 183} .284{ .358 397
6 OT2 | 209 .325) W0 .
. g 07'6( 2251 .350 .uhtl .::89
.07 225 | 3501 2| k9o
9 070 | 2021 .31k | .396] 439
10 LOokh | 129 | .200| .2s2 | .280
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Stress, O /

Strain, €

Figure I. - Uniaxial stress-strain relation.

Plastic shear strain

Figure 2~ Slip in single crystal (schematic).




NACA TN No. 1871

Figure 3.— Vectors normal to plane of slip and
in direction of slip.

F(T:)
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%0 12 14 } 18
g NNRA
O'L ’

Figure 5.— Variations of tensile plastic strain with
applied tensile stress corresponding to various

terms in series expansion for characteristic
shear curve.
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. 32 f=e Plastic compressive
. "Q\\ strain | I.5Ox|0-3
ks
~N
- : \
Stress history NN
NN —1.25
o, o8 Constant maximum \
_— "
ksi shear stress—"\ N €
\\. N\
\ —
i NN 00
Constant octahedral \ \
[ shear ﬂﬂess——’lj:"\\
1 1 1
245 4 8 2 72
T, ksi

Figure 6.- Compressive stress and plastic compressive
- strain measured during twist of cylinder at
constant total compressive strain.

35t Sh
Octhedral- ear stress,
shear theory A’
i Compressive 8
stress, »
kel 25} 2,0
20 °New theory
| " A L \ I .
0 002 003 004
Compressive strain
. Figure 7- Compressive stress-strain relations for cylinder subjected first

to compression (OA), and then to torsion at constant compressive
strain (AB), followed by removal of torsion and then compression.




30

NACA TN No. 1871

Figure 8.— Coordinate system used for analytical
representation of direction cosines.

Figure 9.— System for classifying slip planes by means
of plane orientation (schematic).
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: ‘ T
), oo
(rll) (r'z)mox
R% B =0°
5. (o) Components of shear stress in various
directions of slip.
o |
L S 90°
8"
“ 72°
O
® 54°
«“ 45°
f 36.
- .27
g b e
. ' (b) Slip directions are those in crescent.

Figure 10.- Graphical construction used in determining shear-
’ stress components causing slip.
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F(rig)sinB 10°

F{t,p)cos 8 = 10®

Figure I1.— Master chart for rapid evaluation of F(r,)cos8 and F(ru)slnﬁ.

[ |
L ——




NACA TN No. 1871°*

F(Tg)cos 8 x10°
Figure 12.— Master chart fitted over shear-stress diagram
. (f1g.10(a)) to permit direct reading of F(7,,)coss.

33

F(7,,)sin8 x 10°
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